Repository | Book | Chapter

176365

Mining of topographic feature from heterogeneous imagery and its application to lunar craters

Rie Honda Yuichi Iijima Osamu Konishi

pp. 395-407

Abstract

In this study, a crater detection system for a large-scale image database is proposed. The original images are grouped according to spatial frequency patterns and both optimized parameter sets and noise reduction techniques used to identify candidate craters. False candidates are excluded using a self-organizing map (SOM) approach. The results show that despite the fact that a accurate classification is achievable using the proposed technique, future improvements in detection process of the system are needed.

Publication details

Published in:

Arikawa Setsuo, Shinohara Ayumi (2002) Progress in discovery science: final report of the Japanese discovery science project. Dordrecht, Springer.

Pages: 395-407

DOI: 10.1007/3-540-45884-0_29

Full citation:

Honda Rie, Iijima Yuichi, Konishi Osamu (2002) „Mining of topographic feature from heterogeneous imagery and its application to lunar craters“, In: S. Arikawa & A. Shinohara (eds.), Progress in discovery science, Dordrecht, Springer, 395–407.